ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Thomas E. Booth, James E. Gubernatis
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 283-291
Technical Paper | doi.org/10.13182/NSE09-62
Articles are hosted by Taylor and Francis Online.
Recently, we proposed a modified power iteration method that simultaneously determines the dominant and subdominant eigenvalues and eigenfunctions of a matrix or a continuous operator. One advantage of this method is the convergence rate to the dominant eigenfunction being [vertical bar]k3[vertical bar]/k1 instead of [vertical bar]k2[vertical bar]/k1, a potentially significant acceleration. One challenge for a Monte Carlo implementation of this method is that the second eigenfunction is represented by particles of both positive and negative weights that somehow must sum (cancel) to estimate the second eigenfunction faithfully. Our previous Monte Carlo work has demonstrated the improved convergence rate by using a point flux estimator method and a binning method to effect this cancellation. This paper presents an exact method that cancels over a region instead of at points or in small bins and has the potential of being significantly more efficient than the other two.