ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Supplier Showcase focus: Reducing cumulative radiological exposure
The American Nuclear Society is hosting a new Supplier Showcase webinar, “Reducing Cumulative Radiological Exposure with Advanced Source Term Removal Technologies,” on October 15 from 2:00 p.m. to 3:00 p.m. (EDT) on recent advancements in decontamination technology.
The webinar is free for all viewers and requires registration.
C. R. Gould, A. I. Hawari, E. I. Sharapov
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 200-209
Technical Paper | doi.org/10.13182/NSE09-48
Articles are hosted by Taylor and Francis Online.
We revisit the determination by Bowman et al. of unusual neutron transport characteristics for a newly fabricated form of graphite [Nucl. Sci. Eng., 159, 182 (2008); Nucl. Sci. Eng., 161, 68 (2009)]. From MCNP modeling and consideration of data from other experiments, we determine revised values for the neutron transport parameters of this graphite. Our reanalysis gives a coherent scattering cross section coh ˜ 4 b at 50 meV, a small-angle neutron scattering cross section sans ˜ 11 to 13 b at 1 meV, and an effective capture cross section a = 5.8 ± 0.5 mb. Scaled to a graphite reference density of 1.60 g/cm3 , we find a diffusion coefficient [overbar D] = 0.94 ± 0.03 cm and a diffusion length L = 47.7 ± 3.7 cm. Apart from the somewhat larger values of a and [overbar D], these are not untypical parameters for graphite. Based on our investigation, the recent experiments and analysis of Bowman et al. do not give evidence for different transport properties for this newly fabricated graphite.