ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Brian C. Franke, Ronald P. Kensek
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 170-179
Technical Paper | doi.org/10.13182/NSE08-68
Articles are hosted by Taylor and Francis Online.
We describe a method that enables Monte Carlo calculations to automatically achieve a user-prescribed error of representation for numerical results. Our approach is to iteratively adapt Monte Carlo functional-expansion tallies (FETs). The adaptivity is based on assessing the cellwise 2-norm of error due to both functional-expansion truncation and statistical uncertainty. These error metrics have been detailed by others for one-dimensional distributions. We extend their previous work to three-dimensional distributions and demonstrate the use of these error metrics for adaptivity. The method examines Monte Carlo FET results, estimates truncation and uncertainty error, and suggests a minimum-required expansion order and run time to achieve the desired level of error. Iteration is required for results to converge to the desired error. Our implementation of adaptive FETs is observed to converge to reasonable levels of desired error for the representation of four distributions. In practice, some distributions and desired error levels may require prohibitively large expansion orders and/or Monte Carlo run times.