Experimental values for the viscosity of the radioactive hydrogen isotope tritium (T2) are currently unavailable in literature. The value of this material property over a wide temperature range is of interest for applications in the fields of fusion and neutrino physics, as well as to test ab initio calculations. As a radioactive gas, tritium requires a careful experiment design to ensure safe and environmental contamination–free measurements. In this contribution, we present a spinning rotor gauge–based tritium-compatible design of a gas viscosity measurement apparatus, or ViMA, capable of covering the temperature range from 80 to 300 K.