The commercial generation of electricity and high-temperature thermal energy via fusion technology remains one of the promising alternatives to help meet the challenging targets to decarbonize the global energy system. Fusion technology can play a significant role as part of the long-term switch away from carbon-based fuels for electricity and heat due to high energy output, usage of abundant fuel that can be made available without environmental degradation, and avoidance of long-lived and toxic transuranics.

Many countries have their own fusion research and development programs, while large research efforts are being undertaken in multicountry collaborations, such as ITER. Recently, fairly new (semi-) commercial organizations have been successful in initiating independent development programs funded by government grants and private investments.

Different fusion reactor technologies still share many challenges, with one of the major issues being the management of the deuterium-tritium (DT) fuel cycle and associated auxiliary systems. These different fusion technology developers could benefit immensely from existing and available DT expertise, allowing them to focus primarily on the physics and mechanical aspects of their reactor technologies while finding support for common tritium technological challenges through collaboration. As world-leading experts in DT technology, Canadian Nuclear Laboratories (CNL) and the United Kingdom Atomic Energy Agency(UKAEA), are well positioned to support such needs of the fusion industry.

This paper broadly explores the worldwide DT challenges, identifies opportunities where tritium expertise is key to the development of fusion infrastructure, and presents a view of how CNL and UKAEA are addressing these opportunities for the various fusion developers. This paper presents a holistic view that may be informative to future tritium roadmap and decision-making exercises conducted within the community.