The China Fusion Engineering Test Reactor (CFETR) is a device developed to verify the engineering feasibility of a fusion reactor. For CFETR, the divertor is an important plasma-facing component, whose main function is to exclude impurities and remove plasma heat. In addition, the requirement for remote handling (RH) maintenance must be satisfied because of the level of radioactivity in the vacuum vessel after shutdown. The dome is an important component of the divertor, whose main function is to isolate impurity particles as well as to improve the ability of excluding particles. In the optional dome design, a hybrid divertor-blanket concept, a front-face RH compatible structure in plasma-facing units (PFUs), and a RH maintenance scheme for the main bolt are proposed. The vulnerable targets can be replaced directly and thus reduce the RH maintenance time. The dome needs to withstand the heat flux of 10 MW/m2 and nuclear heat in the condition of 1.5 GW of fusion power in the engineering design requirements. Because of the RH compatible structure, higher requirements are demanded for the design of the dome cooling system. In this study, the cooling system and the customized heat transfer structure of dome PFUs are designed to guarantee the maximum heat removal level. The steady-state thermal analysis shows that the cooling system fulfills the design requirements. The concept of the hybrid divertor-blanket and the front-face RH compatible structure for the divertor target have certain reference significance and value for the engineering design and RH maintenance research for the fusion reactor divertor in the future.