ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
B. A. Grierson, X. Yuan, M. Gorelenkova, S. Kaye, N. C. Logan, O. Meneghini, S. R. Haskey, J. Buchanan, M. Fitzgerald, S. P. Smith, L. Cui, R. V. Budny, F. M. Poli
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 101-115
Technical Paper | doi.org/10.1080/15361055.2017.1398585
Articles are hosted by Taylor and Francis Online.
TRANSP simulations are being used in the OMFIT workflow manager to enable a machine-independent means of experimental analysis, postdictive validation, and predictive time-dependent simulations on the DIII-D, NSTX, JET, and C-MOD tokamaks. The procedures for preparing input data from plasma profile diagnostics and equilibrium reconstruction, as well as processing of the time-dependent heating and current drive sources and assumptions about the neutral recycling, vary across machines, but are streamlined by using a common workflow manager. Settings for TRANSP simulation fidelity are incorporated into the OMFIT framework, contrasting between-shot analysis, power balance, and fast-particle simulations. A previously established series of data consistency metrics are computed such as comparison of experimental versus calculated neutron rate, equilibrium stored energy versus total stored energy from profile and fast-ion pressure, and experimental versus computed surface loop voltage. Discrepancies between data consistency metrics can indicate errors in input quantities such as electron density profile or , or indicate anomalous fast-particle transport. Measures to assess the sensitivity of the verification metrics to input quantities are provided by OMFIT, including scans of the input profiles and standardized postprocessing visualizations. For predictive simulations, TRANSP uses GLF23 or TGLF to predict core plasma profiles, with user-defined boundary conditions in the outer region of the plasma. International Tokamak Physics Activity (ITPA) validation metrics are provided in postprocessing to assess the transport model validity. By using OMFIT to orchestrate the steps for experimental data preparation, selection of operating mode, submission, postprocessing, and visualization, we have streamlined and standardized the usage of TRANSP.