ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
M. S. Tillack, R. L. Miller, C. G. Bathke, L. A. El-Guebaly
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1594-1598
Fusion Power Plants and Economics | doi.org/10.13182/FST96-A11963179
Articles are hosted by Taylor and Francis Online.
Advanced structural materials for fusion in-vessel components offer the promise of improved safety and environmental features as well as improved engineering performance, as characterized by high thermal conversion efficiency and high power density limits. However, the cost of advanced materials is expected to be much higher than that of more conventional steel-based alloys. Therefore, the economic advantage is limited. In this study, we compare a high-performance vanadium-based power plant and a lower-performance ferritic steel plant. Self-consistency is maintained through the use of the ARIES systems code. The tradeoffs include the effect of coolant outlet temperature on thermal conversion efficiency, power density limitations, component lifetime and availability. Ideally, comparisons should be made between fully-detailed design concepts. However, a rough systems-level analysis allows identification of the relative magnitude of the economic advantages expected from “high performance” materials.