This paper describes the design of a 1000 MWe inertially confined fusion power reactor utilizing near symmetric illumination provided by a KrF laser. The nominal laser energy is 3.4 MJ, the target gain is 118 and the rep-rate is 6.7 Hz. Sixty beams are distributed on ten horizontal planes with six beams in each plane forming a cone with the vertex at the reactor chamber center. The chamber is spherical internally with a radius of 6.5 m and is divided into 12 vertical modules consisting of two independent parts, the first wall assembly and a blanket assembly. The first wall assembly is made of a C/C composite and is cooled with non-breeding granular solid TiO2 flowing by gravity at a constant velocity. The blanket assembly is made from SiC composite and is cooled with granular Li2O also flowing by gravity. After going through the heat exchangers, the granular materials are returned to the reactor by means of a fluidized bed. The first wall is protected with a xenon buffer gas at 0.5 torr. The chamber is housed in a cylindrical building 42 m in radius and 86 m high, and is surrounded with a 1.5 m thick biological wall at a radius of 10 m. The laser beam ports are open to the containment building, sharing the same vacuum. Two power conversion cycles have been analyzed, a steam Rankine cycle with an efficiency of 47% and an advanced He gas Brayton cycle at an efficiency of 51%. The nominal COE is ∼65 mills/kWh assuming an 8% interest on capital.