Poloidal divertors and pumped limiters are the leading candidates for impurity and particle control systems for ignited tokamaks. Such systems must be able to provide heat removal and He pumping while satisfying the requirements for (1) minimum plasma contamination by impurities, (2) reasonable component lifetime (∼ 1 year), and (3) minimum size and cost and maximum simplicity. The advantage of poloidal divertor systems is that they offer the possibility of low sputtering rates for the first wall components and modest pumping requirements due to the formation of a cool, dense plasma near the collector plates. Estimates made as part of the INTOR study indicate that the sputtering rates for pumped limiters could be unacceptably large. A engineering design study of a poloidal divertor system for an ignited tokamak indicates that such a system offers a reasonable solution to the impurity and particle control problem at only a modest increase in total reactor cost (∼7%) and complexity compared to a pumped limiter system.