A computer program for evaluating the poloidal distribution of the neutron wall loading (NWL) in toroidal fusion reactors is developed using numerical integration for general plasma and wall shapes. The neutron source within the plasma could be uniform or could be described to properly represent the neutron density associated with the magnetic flux surfaces. The method and techniques used in NEWLIT are presented. A comparison with the Monte-Carlo code MCNP shows excellent agreement with substantial savings in computer time and required user time. To verify the validity of the NWL as calculated by NEWLIT, a detailed 3-D neutronics calculation was carried out for a representative tokamak reactor. The poloidal distribution of the important responses is compared to the NWL poloidal distribution.