The Fusion Power Demonstration study is the development of a tandem mirror reactor design that follows the operation of the Mirror Fusion Test Facility. It is a power-producing device utilizing the deuterium-tritium fuel cycle; hence, much of its maintenance must be accomplished remotely because of neutron-induced gamma activation. This paper discusses the maintenance philosophy adopted and its impact on the device configuration and examines some of the specific requirements of scheduled and unscheduled component replacements. This work is being used for the next phase of mirror reactor concepts: the Mini-Mars reactor study.