A simplified scaling law approach for calculating activation-induced radioactive inventories is extended and applied. The goal is to provide a sufficiently accurate, very fast method to calculate activation radioactive inventories as an integral part of tokamak system design codes. The method is applied to a silicon carbide first wall, but now all relevant daughter nuclides are considered, and the results are used to calculate various indexes that can be used to characterize environmental and safety characteristics of fusion reactors. The indexes obtained from the scaling laws are in reasonable agreement with those derived from inventories calculated directly from more time-consuming Monte Carlo methods.