An ideal magnetic container for a D-3He fusion reactor must ensure both the stability of the confined plasma and the ability to control the confinement of fusion products. A dipole magnetic field may be suitable for D-3He fusion since it is predicted to be able to confine high-beta plasmas while allowing extraction of the high-energy charged fusion products for direct conversion as well as removal of fusion ash using resonant and / or nonresonant static magnetic perturbations. In a dipole magnetic field, even an equilibrium plasma having a phase-space density satisfying , where ψ is the flux function, has a steep enough pressure prof He for high fusion reactivity within the core yet is stable to low-frequency instabilities for local beta exceeding unity. At the outer wall, the plasma density and temperature can be very low, and stability can be obtained by line-tying or localized magnetic cusps, which can be used for direct conversion. New calculations of fusion product control and plasma stability with isotropic pitch-angle distributions are described. In addition, the parameters of a new, higher field dipole reactor design are discussed.