Materials recycling aspects including contact gamma dose rates and cooling times were investigated for the first wall, blanket, and shield components of future fusion power reactors. Candidate structural mate-rials studied include ferritic steel, vanadium alloy, and SiC ceramic material. Required cooling times to reach hands-on recycling and impurity levels at given cooling times were estimated for the blanket components made of the various candidate structural materials. The relationship between the specific activity limits of radioactive materials for shallow-land burial (U.S. 10CFR61 Class C) waste disposal and the corresponding contact dose rates was examined. Scenarios for waste material management of fusion reactor components were suggested considering the materials recycling and shallow-land waste disposal options. Achievable impurity levels in vanadium ingot and titanium crystal bar were reviewed, and compared to desired levels for hands-on recycling. Methods to improve the purity levels were discussed.