In the HYLIFE inertial confinement fusion reactor, fusion occurs in pulses several times every second, x rays ablate material from the array of molten 2LiF-BeF2 salt (Flibe-Li2BeF4) jets used to protect the reactor vessel, generating a hot, dissociated and partially ionized vapor. Further evaporation of the blanket material occurs as the vapor radiates to the jets. Eventually this vapor must be condensed to restore sufficient vacuum for the next shot. The rate of condensation determines the permissible fusion repetition rate. With extensive dissociation, the chemical composition in the reactor will be complicated. A good understanding of the chemical kinetics is essential for the calculation of the composition and, therefore, for the accurate calculation of the vapor condensation rate. Analysis presented here shows that recombination rates will be fast compared to fluid dynamic and condensation time scales for a major portion of the condensation process, making it possible to assume quasi-equilibrium in the vapor phase.