ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
R. W. Moir, J. H. Hammer, C. W. Hartman, R. L. Leber, B. G. Logan, R. W. Petzoldt, M. Tabak, M. T. Tobin, R. L. Bieri, M. A. Hoffman
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1492-1500
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29931
Articles are hosted by Taylor and Francis Online.
The Compact Torus Accelerator (CTA), under development at Lawrence Livermore National Laboratory, offers the promise of a low-cost, high-efficiency, high-energy, high-power-density driver for ICF and MICE (Magnetically Insulated ICE) type fusion systems. A CTA with 100 MJ driver capacitor bank energy is predicted to deliver ∼30 MJ CT kinetic energy to a 1 cm2 target in several nanoseconds for a power density of ∼1016 watts/cm2. The estimated cost of delivered energy is ∼3$/Joule, or $100M for 30 MJ. This driver appears to be cost-effective and, in this regard, is virtually alone among IFE drivers. We discuss indirect-drive ICF with a DT fusion energy gain Q = 70 for a total yield of 2 GJ. The CT can be guided to the target inside a several-meter-long disposable cone made of frozen Li2BeF4, the same material as the coolant. We have designed a power plant including CT injection, target emplacement, containment, energy recovery, and tritium breeding. The cost of electricity is predicted to be 4.8 ¢/kWh, which is competitive with future coal and nuclear costs.