The Compact Torus Accelerator (CTA), under development at Lawrence Livermore National Laboratory, offers the promise of a low-cost, high-efficiency, high-energy, high-power-density driver for ICF and MICE (Magnetically Insulated ICE) type fusion systems. A CTA with 100 MJ driver capacitor bank energy is predicted to deliver ∼30 MJ CT kinetic energy to a 1 cm2 target in several nanoseconds for a power density of ∼1016 watts/cm2. The estimated cost of delivered energy is ∼3$/Joule, or $100M for 30 MJ. This driver appears to be cost-effective and, in this regard, is virtually alone among IFE drivers. We discuss indirect-drive ICF with a DT fusion energy gain Q = 70 for a total yield of 2 GJ. The CT can be guided to the target inside a several-meter-long disposable cone made of frozen Li2BeF4, the same material as the coolant. We have designed a power plant including CT injection, target emplacement, containment, energy recovery, and tritium breeding. The cost of electricity is predicted to be 4.8 ¢/kWh, which is competitive with future coal and nuclear costs.