The Inertial Confinement Fusion (ICF) Program and the Lawrence Livermore National Laboratory has made substantial progress in understanding the details of the radiation drive and the dynamics of capsules imploded by the Nova laser. A detailed understanding, validated by Nova experiments of the crucial physics for implosions is necessary before a new facility is started. A National Academy of Science Review Committee on ICF1 has recently endorsed a 12 point technical contract for the Nova program. Recent experiments have achieved a substantial number of these goals. A decrease in the level of plasma instabilities has been demonstrated by the use of phase plates. Neutron measurements have been used to demonstrate high densities in well understood implosions. A detailed understanding of the Rayleigh-Taylor instability at the ablation front of x-ray driven planar foil targets with large hydrodynamic growth factors has been proven. X-ray spectroscopy has been used to demonstrate a high fuel density and an improvement in the compression ratio of targets when a shaped pulse is used to keep a pusher on a low rho-r trajectory.