The development of a low-level tritium monitor for aqueous effluents has explored several potential techniques. In one method, a water-immiscible liquid scintillation cocktail was ultrasonically mixed with an aqueous sample to form a water-cocktail dispersion for analysis by liquid scintillation spectrometry. The organic cocktail could then be reused after phase separation. Of the cocktails tested, a toluene-based cocktail showed the highest tritium detection efficiency (7%). In another technique, the sensitivity of various solid scintillators (plastic beads, crushed inorganic salts, etc.) to tritium in aqueous solutions was measured. The most efficient solid scintillator had a 2% tritium detection efficiency. In a third method, a large surface area detector was constructed from thin fibers of plastic scintillator. This detector had a 0.1% intrinsic tritium detection efficiency. While sensitivities of -25 kBq/L of tritium for a short count have been attained using several of these techniques, none can yet reach the environmental level of < 1 kBq/L in aqueous solutions.