The intrinsic potential of a field-reversed configuration (FRC) for high-beta operation (beta values in the range of 50 to 100%) stimulates much interest in this device as an attractive candidate for a compact fusion reactor with high power density. Several additional benefits, e.g., the cylindrical geometry of the concept, the simplicity of the magnetic system, the simply connected plasma, the low synchrotron radiation, the divertor action of the open field lines, and the possibility for direct energy conversion of the charged-particle flow, justify a closer look at the benefits and problems of FRCs. The emphasis here is on operation with D-3He fuel under reactor-relevant conditions, whereas deuterium-tritium (D-T) is taken as a reference case. The reasons for that choice are that (a) D-3He offers intrinsic advantages over D-T in neutron production and radioactive inventory and (b) the high-beta regime of an FRC matches ideally some of the requirements for D-3He operation. A steady-state version of an FRC is considered to be more attractive than its pulsed counterpart. Frequent startup to high temperatures would be particularly detrimental for D-3He, where startup scenarios seem to rely either on the transition from D-T to D-3He, with unavoidable strong tritium contamination, or on high-power neutral beam injection.