The radiation shield for the toroidal field (TF) coils in the International Thermonuclear Experimental Reactor (ITER) is optimized using one-dimensional calculations. The ANISN code with the VITAMIN-C group constant library and MAKLIB-IV response library are used for the calculations. Two ways of evaluating the total heating in the TF coils are presented. These methods, being standard approaches, use the results of both one-dimensional shielding calculations and three-dimensional calculations f or the neutron wall load distribution on the reactor first wall, and they seem to be useful f or future work on ITER and ITER-like projects such as the Next European Torus (NET), Fusion Experimental Reactor (FER), and Compact Ignition Tokamak (CIT). The main results of the optimization and the total heating evaluation are compared with U.S. and European team results. The local nuclear responses in the TF coils remain within the prescribed limits everywhere. The total nuclear heating in the ITER TF coils is within the 50-kW limit in the physics phase using either the U.S. or the USSR blanket concept. The total nuclear heating in the ITER TF coils during the technology phase is expected to be ∼20% lower than that in the physics phase.