Following recent announcements of the occurrence of nuclear fusion between deuterium nuclei in palladium near room temperature in an electrolysis cell, explanations for the incredibly large increase in fusion probability have been sought. Two pointers seem to emerge: the high density of deuterium ions sustained by the cathode material and, more importantly, the substantial screening effect produced by the conduction electrons in the host metal, which reduces the D+-D+ barrier. This latter mechanism appears to be a function of the concentration of the D+ ions. It is well known that an electric field applied across a metallic bar produces a large concentration gradient of interstitial ions along the length of the bar. For hydrogen (or deuterium) in metals, ordinary electric fields can produce a concentration gradient of ∼1020 between the ends. Thus, with the simultaneous application of an electric field along the length of the cathode in an electrolysis experiment, an elegant method of producing a nonequilibrium deuterium concentration becomes available. Hence, it is reasonable to expect an enhancement in the nuclear reactions occurring in the cathode in such an experiment. To investigate this phenomenon, a two-compartment electrolysis cell is built. A titanium rod suitably shaped for the application of the simultaneous electric field is employed as the cathode. Electrolysis of heavy water is conducted for several hours. Neutron counters are employed for continuous detection of neutrons. With the size of electrode used and for electric fields of up to 20 mV/cm, neither a significant neutron emission nor any rise in the tritium level in the heavy water are detected. Faint traces of autoradiographs are, however, observed for the cathode.