ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
D.E. Palmrose, T.A. Parish, R. Carrera, Y. Watanabe
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1931-1937
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29624
Articles are hosted by Taylor and Francis Online.
The activation characteristics of several materials were evaluated for short term as well as long term impacts on the operation of the IGNITEX device. Candidate design materials for the vacuum wall, magnet, and the cryostat outer covering were studied for their activation levels over the operational history of the IGNITEX fusion experiment and for 100 years beyond shutdown. Although DT fuel was of primary interest in this study, activation from DD shots also was investigated for the primary vacuum wall candidate material. Activation results showed for that the type of material chosen for each component can significantly affect the amount and the disposal classification of the radioactive wastes generated by the IGNITEX device.