A zirconium cobalt bed has been designed with large conductance, low porosity filters and a large bed containment mass to improve the rate of hydriding. By ensuring that sufficient thermal ballast is available, the hydriding rate will be exponential thereby approaching the desired isothermal limit. Loading dependencies upon initial tank pressure and bed capacity at ambient temperature have been studied. Hydrided ZrCo powder was observed to spontaneously combust in air at ambient temperature after undergoing 12 hydriding/dehydriding cycles. ZrCo powder progressively fragments into submicronic fines with continued bed cycling up to 35 bed cycles. No permanent degradation in the rate of hydrogen loading onto ZrCo has been observed during 95 hydriding/dehydriding cycles.