A 2:1 mixture of LiF and BeF2 (FLIBE), is a potential tritium breeder material for fusion reactors, in particular, the Advanced Safe Pool Immersed Reactor (ASPIRE). A limited experimental campaign was conducted in an effort to test the postulates of the ASPIRE concept: namely, that MoF6 is effective in controlling the tritium species by maintaining the TF form and that MoF6 can serve as a source to plate out Mo on surfaces, thereby making the FLIBE system compatible with the corrosive TF. It was demonstrated experimentally that successive additions of MoF6 achieved quantitative (i.e., greater than 99.7%) conversion of H2 to HF. Thus, MoF6 is effective in controlling the tritium species. The degree of conversion of H2 to HF demonstrates that HF does not attack MO to form H2. This supports the postulate that the system is compatible with Mo. Thus, if it were possible to plate out and maintain a coating of Mo on all surfaces in contact with the FLIBE system, the ASPIRE concept could work. Thermodynamic calculations also confirmed that MoF6 should be capable of quantitatively (>99.9%) converting H2 to HF. There is both experimental and theoretical evidence that a number of MoFx species are present in both the gas phase and the FLIBE solution.