ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
G. R. Smolik, B. J. Merrill, S. J. Piet, D. F. Holland
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1342-1348
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29529
Articles are hosted by Taylor and Francis Online.
This paper presents the results of an experimental/analytical study designed to determine the quantity of hydrogen generated during an accident involving coolant leakage into the plasma chamber of the International Thermonuclear Experimental Reactor (ITER). This hydrogen could represent a potential explosive hazard, provided the proper conditions exist, causing machine damage and release of radioactive material. We measured graphite/steam reaction rates for several graphites and carbon-based composites at temperatures between 1000 and 1700°C. The effects of steam flow rate and partial pressure were also examined. The measured reaction rates correlated well with two Arrhenius type relationships. We used the relationships for GraphNOL N3M in a thermal model to determine that for ITER the quantity of hydrogen produced would range between 5 and 35 kg, depending upon how the graphite tiles are attached to the first wall. While 5 kg is not a significant concern, 35 kg presents an explosive hazard.