The response of ARIES-I divertor plate to hard plasma disruptions has been analyzed numerically by a two-dimensional transient heat transfer code. For ARIES-I, the estimated thermal quench time is 0.3 msec and the average heat flux is 8.8×109 W/m2 with a peaking factor of 5. The divertor plate is made of 2.5 mm diameter SiC tubes with wall thickness of 0.5 mm and coated with a 2 mm layer of tungsten on the plasma facing side. The analysis predicts a total material erosion per disruption of about 111 µm without vapor shield and 48 µm with a simple vapor-shield model. The designated 1 mm of the tungsten coating for disruption is expected to last about 20 disruptions. A two-dimensional thermo-fluid dynamic analysis of the melt layer under the influence of buoyancy and surface tension forces has been performed. The results tend to imply that the melt layer is relatively unaffected during the disruption, especially for short thermal quench time.