A novel gaseous divertor concept is proposed consisting of gas chamber and pumping at high pressure or by reionizing the neutrals. The concept results in substantial reductions of the plasma temperature and heat flux at the target and the pumping requirement. Fluid model simulations of the scrape-off region of the Aries Reactor design by feeding the gas at the target at a flux of 1 × 1023m−2/s at 0.5 eV has shown that the electron and ion temperatures can be cooled to 20 eV. The heat flux to the target can be reduced from 80 MW/m2 to 6 MW/m2. The plasma temperature and heat flux at the divertor target are monotonically decreasing functions of the neutral incident flux. Interestingly the temperature and the heat flux also decrease with decreasing neutral gas initial flowing speed removing the need of gas jets. The backflow problem can be minimized by including a baffle plate to form a gaseous chamber. Monte-Carlo simulations using test particles have showed that the throat of the gaseous chamber can be practically plugged by the incident plasma to prevent backflow of neutrals into plasma core. The pumping can be facilitated by either operating the divertor chamber at high pressure on the order of 30 torr or reionizing the neutrals traveling to a weak toroidal field region.