Major applications of the Laboratory Microfusion Facility (LMF) will include nuclear effects simulation testing and commercial development of inertial fusion. Recent studies of the use of the LMF for x-ray effects experiments have demonstrated that this testing is possible at high-dose and dose rate with good fidelity because neutron effects can be minimized. To insure a basis for comparison between design studies at Sandia National Laboratories Albuquerque (SNLA), Lawrence Livermore National Laboratory (LLNL), and the Air Force Institute of Technology (AFIT), we developed a computational benchmark. The benchmark geometry includes a spherical photon scatterer and a conical neutron shield, both of LiH enriched to 96.5% 6Li. The benchmark x-ray source is a 15-keV Plankian spectrum, and the neutron source is mono-energetic 14.1-MeV neutrons. We compared results with the following computer codes and cross section libraries: MORSE and DABL69 at AFIT, TART and ENDL at LLNL, and MCNP and ENDL at SNLA. We present a comparison of the predicted x-ray, neutron, and n-gamma doses at a 3-m distant, 2-m diameter exposure plane. We compare total doses and peak dose rates; and we discuss differences in results.