ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
William L. Barr
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 498-502
Technical Paper | Plasma Engineering | doi.org/10.13182/FST91-A29390
Articles are hosted by Taylor and Francis Online.
A physics model is developed for estimating the principal parameters of the edge plasma in a large tokamak with a poloidal divertor. The model is essentially one-dimensional, but it includes transverse scale lengths that are derived from power balance. The model allows highly elongated magnetic configurations with either a double or a single null. The power flowing into the edge plasma, the power radiated from the edge plasma, and the power incident on the divertor are all assumed to be known. The plasma density at the separatrix is also assumed to be known. Equations developed from the model give the plasma temperature at the midplane separatrix, the plasma temperature and density at the divertor, and the transverse scale length for power flow in the edge plasma. The scaling relations for the plasma parameters and an expression for the peak heat flux at the divertor are derived. The basic assumption made in developing the model is that the transverse scale lengths can be mapped from one region in the edge plasma to another by the conservation of magnetic flux.