A zero-dimensional, time-dependent, particle and power balance code was developed and used to evaluate the effectiveness of different burn control methods for the stabilization of unstable ignited and subignited operating points of the International Thermonuclear Experimental Reactor (ITER) physics phase machine. Based on the results of our calculations, we conclude that the operation of ITER at thermally unstable operating points is physically and technologically feasible. Control with auxiliary power modulation seems to be the method of choice for the control of subignited unstable points, while other methods such as modulation of the fueling rate and high-Z impurity injection can also be used, especially for the control of unstable ignited points where auxiliary power modulation cannot be used.