ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Sergey V. Konovalov, Sergey V. Putvinsky
Fusion Science and Technology | Volume 18 | Number 3 | November 1990 | Pages 397-402
Alpha Particles in Fusion Research | Technical Paper | doi.org/10.13182/FST90-A29273
Articles are hosted by Taylor and Francis Online.
The influence of static helical perturbations on high-energy ion motion in tokamaks is investigated. Numerical solutions of drift motion equations are in good agreement with analytic estimations of the critical amplitude value that is sufficient for destruction of drift surfaces. Three types of perturbations are considered: large-scale helical modes with wide regions of localization comparable with the plasma column radius, small-scale modes localized near the resonant magnetic surfaces, and balloon-like modes. For all three cases, high perturbation amplitudes are needed for destruction of drift surfaces. The static helical perturbation does not appear to lead to noticeable high-energy particle losses in tokamaks until the perturbation amplitude exceeds the value sufficient for magnetic surface destruction.