Reaction rates from recent electrochemical fusion experiments have been found to be as many as seventy orders of magnitude larger than those obtained from simple calculations involving an extrapolated low-energy deuterium-deuterium (D-D) cross section and a sharp velocity distribution. However, if an appropriate Maxwell-Boltzmann velocity distribution is used in place of the conventional sharp (mono-energetic) velocity distribution, the calculated reaction rate increases by as much as fifty to sixty orders of magnitude. Furthermore, the center-of-mass energy at which the D-D cross section is evaluated for given D-D energy is much larger than that used in the conventional calculations due to the higher energy components in the Maxwell-Boltzmann distribution. Finally, the above results are not significantly affected if a reasonable high-energy cutoff Ec is included in the velocity distribution.