Conceptual design of an electrochemically induced deuterium-tritium fusion power reactor has been carried out. A double-tube-type fuel cell is proposed for efficient electrolysis and to provide a large cathode area. The fuel cell tubes are assembled like a pressurized water reactor (PWR) control rod cluster. The tritium fuel is continuously fed through the cluster rod to the cell. The voltage for the electrolysis is supplied through the rod. The tritium breeding Li2O is contained in a hexagonal blanket through which coolant tubes penetrate. The fuel cell tube is inserted in the coolant tube and the water coolant flows through the annuli. The tritium is continuously recovered from the blanket by using helium gas. The blanket assemblies are contained in the pressure vessel. The tubes of the helium gas and the cluster rods penetrate through the upper dome of the vessel. The shape of the reactor and the coolant system are similar to those of PWRs. The vessel is somewhat squat, because the height of the blanket is approximately half that of a PWR core.