ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Robert W. Bussard
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 231-236
Technical Note | doi.org/10.13182/FST89-A29152
Articles are hosted by Taylor and Francis Online.
A model of deuterium-deuterium (D-D) fusion in metal lattices is presented based on two phenomena: (a) reactions between virtual-state pairs of deuterons “bound” by electrons of high effective mass m* and (b) deuterium energy upscattering by fast ions from fusion or tritium reactions with virtual-state nuclear structure groups in palladium nuclei. Since m* is a decreasing function of deuterium ion bulk density n0, the exponential barrier tunneling factor decreases rapidly with m*. As a result, the fusion rate reaches a maximum at a loading density above zero but less than saturation. This can explain observations of transient neutron output from the (3He,n) branch of D-D fusion. At low energy, D-D reactions favor the (T,p) branch. Fast product tritium may be captured by palladium isotopes to form excited-state Ag*, removing tritium from the system and preventing deuterium-tritium fusion. This may decay by alpha or proton emission, yielding fast ions and excited state Rh* or Pd*. Fast ion collisional “trapping” may occur at Fermi electron speeds, enhancing in situ upscattering and yielding increased D-D reaction rates. Analysis of the dynamics of these processes suggests conditions for exponential growth.