ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
S. K. Ho, Max E. Fenstermacher
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 185-196
Technical Paper | Plasma Engineering | doi.org/10.13182/FST89-A29147
Articles are hosted by Taylor and Francis Online.
It is desirable for the plasma operating points of future Engineering Test Reactor (ETR) tokamaks to be in parameter regimes that are inherently stable to thermal fluctuations; in other words, thermal equilibrium is maintained by properties of the power balance terms themselves without an active burn control system. Methodologies are presented for calculating thermally stable operating points and scenarios to achieve these conditions. Results are given for an ETR tokamak with major radius R0 = 5.8 m in both the ignition and current-drive modes. Though the results are sensitive to the form of the energy confinement scaling law used, for enhancements over L-mode confinement by factors of 1.5 to 2.0, stable operating regions in (n, T) space have been identified for ignited operation with T ≥ 20 keV and for current-drive steady-state operation with T ≈ 25 keV. Burn dynamics simulations and discussion of critical issues are also presented. The analyses are general and should be applicable to a wide variety of deuterium-tritium burning tokamaks.