In response to the startling announcement of fusion reactions occurring at room temperature by Fleischmann and Pons (F-P), the possible role of high-current densities in producing neutrons and excess heat in deuterated titanium maintained near ambient temperatures and pressures is examined. The apparatus used consists of a balanced resistive circuit containing a deuterated “active” element and a hydrogenated “control” element. The use of a simple electrical circuit (no electrolysis) with elements made of chemically stable TiDx, X = 0.9, removes the complications involved in distinguishing between heat released by chemical versus nuclear processes in an electrolytic cell. This apparatus tests the possibility that the role of high-current density in the F-P experiments is to create such nonequilibrium states as strong pinching due to current microchanneling in the metallic lattice. This strong pinching, in turn, could reduce the deuteron-deuteron separation sufficiently to cause significant fusion. To detect neutrons, an NE-213 liquid organic scintillator spectrometer is used, with gamma counts eliminated by means of pulse-shape discrimination. Samples are subjected to current densities of ∼50 A /cm2 for time periods of 19 h. This current density is a factor of 100 greater than the largest value reported by Fleischmann and Pons. No significant neutron levels are detected above background. The temperature rise of the two samples during the application of the current can be explained by joule heating alone, with no other heat sources present. Based on these experiments, no excess heat is observed within the accuracy of the apparatus, which is estimated to be 10%. It is concluded that the large quantity of excess heat reported by Fleischmann and Pons is due to the presence of factors other than the current density.