Self-shielding characteristics for two aqueous lithium salt tritium-producing blankets for next-generation fusion devices are examined. The aqueous self-cooled blanket (ASCB) concept is a very simple blanket concept that relies only on structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low-technology, low-temperature environment for blanket test modules in a next-generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal, and tritium production. One driver blanket studied is the concept proposed for the Next European Torus (NET), while the other is indicative of the inboard shield design for the Engineering Test Reactor (TIBER II/ETR) proposed by the United States. It is found that no significant gains in tritium breeding can be achieved in the stainless steel NET blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten TIBER II/ETR blanket shows a 5% increase in tritium production in the shielding blanket when energy self-shielding effects are considered; however, it shows a drastic increase in the tritium breeding ratio due to heterogeneity effects.