ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Wolfgang Schule
Fusion Science and Technology | Volume 10 | Number 1 | July 1986 | Pages 113-123
Technical Paper | Materials Engineering | doi.org/10.13182/FST86-A24752
Articles are hosted by Taylor and Francis Online.
In Cu-30 Zn alloys during irradiation with 2-MeV electrons from a Van de Graaff generator, the electrical resistivity first decreases due to radiation-enhanced ordering and then increases due to the formation of very small interstitial clusters. The activation energy during irradiation for both processes is approximately Qirr = 0.37 eV and is interpreted as half of the migration energy of freely migrating interstitials. For irradiation temperatures below 75°C, a second resistivity increase is found that is attributed to the formation of stable interstitial clusters. The observed radiation-enhanced diffusion rates below ambient temperature are many orders of magnitude smaller and larger than those predicted by the one- and the two-interstitial models, respectively, and these rates are in agreement with the predictions of the modified two-interstitial model.