The modeling steps needed to create dynamically based automated control of tokamak plasmas are traced. This involves integrating models of current/magnetic-flux dynamics; plasma transport; plasma geometry; and source terms, such as lower hybrid, fast wave, and pellet-fueling deposition. Perturbative analysis of these models then yields the linear response of the tokamak to changes in coil voltages, applied radio-frequency power, or pellet-firing frequency. Comparison of the linear response models to nonlinear numerical calculations reveals that the plasma position and shape modeling will require future refinements.