ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
E. Valmianski, R. W. Petzoldt
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 800-803
Technical Paper | doi.org/10.13182/FST07-A1483
Articles are hosted by Taylor and Francis Online.
Mechanical response of DT targets to acceleration was analyzed using the finite element method for Inertial Fusion Energy (IFE) targets and for smaller targets that have been proposed for an upcoming Fusion Test Facility (FTF). Analysis was done in the temperature and acceleration regions of interest for Inertial Fusion Energy (14-19 K and 1,000-10,000 m/s2). In these ranges, von Mises stress distribution, axial deflection, and the minimum value of support membrane attachment angle as well as free vibrations of the target after it leaves the injector were calculated. The role of the outer polymer coating, the support membrane attachment angle and the DT void pressure in the mechanical response of a DT target to acceleration was considered. Analysis shows, assuming that DT mechanical properties are equivalent to D2, that IFE and FTF targets should withstand acceleration of up to 10,000 m/s2 with negligible deformation.