ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Jon D. McWhirter, Michael E. Crawford, Dale E. Klein, Thomas L. Sanders
Fusion Science and Technology | Volume 33 | Number 1 | January 1998 | Pages 22-30
Technical Paper | doi.org/10.13182/FST98-A12
Articles are hosted by Taylor and Francis Online.
An analytical model for magnetohydrodynamic flow in a porous medium comprised of a packed bed of uniform spheres is developed. A rectangular geometry only is considered. Two distinct cases are studied: an infinite packed bed and a finite packed bed including wall effect. The wall effect is modeled by employing a two-zone porosity model, with a higher porosity wall region inserted between the solid wall and the lower porosity core region. The effect of the conductivity of the packed bed is accounted for by analogy with Hartmann flow in a duct with an external load. A parametric analysis is performed with the completed model to assess the effects of various factors upon the model results.