ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
R. J. H. Pearce et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 274-279
Technical Paper | Tritium Science and Technology - Tritium Handling Facilities | doi.org/10.13182/FST05-A926
Articles are hosted by Taylor and Francis Online.
'Trace Tritium Experiments' (TTE) were successfully performed on JET in 2003. The Campaign marked the first use of tritium in JET plasmas since the Deuterium-Tritium Experiment (DTE1) Campaign in 1997, and was the first use of tritium in experiments under the EFDA organisation with the UKAEA as JET Operator. The safety and regulatory preparations for the experiment were extensive. Since JET has been operated by the UKAEA the operations have followed the model of a licensed nuclear site. The safe operation of the JET torus is demonstrated in a safety case. Key Safety Management Requirement (KSMR) and Key Safety Related Equipment (KSRE) are identified in the Safety Case for DT operation. The safe operation of the torus is within the bounds of, and under the control of, an Authority to Operate (ATO). New technical challenges were presented by the need to inject and account for small quantities of tritium in very short pulses (~80ms), with an accurate time stamp. The safety and operational management of the campaign are described. Valuable lessons were learned which would help in running future experiments. It is concluded that JET is in a strong position to run future trace tritium and full DT discharges.