ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Koichi Maki, Chikara Konno, Fujio Maekawa, Hiroshi Maekawa, Katsumi Hayashi, Kobun Yamada
Fusion Science and Technology | Volume 36 | Number 1 | July 1999 | Pages 52-61
Technical Paper | doi.org/10.13182/FST99-A91
Articles are hosted by Taylor and Francis Online.
In traditional shielding design, thicknesses of shieldings have been determined so that calculated shielding properties multiplied by safety factors do not exceed design limits. A shielding design margin is defined for the safety factors that are included in the estimated shielding thicknesses in the design process. Sensitivities of the shielding design margin to the fusion reactor scale and amount of material are examined for a typical fusion experimental reactor such as the International Thermonuclear Experimental Reactor (ITER). From these investigations, supposing the shielding design margin can be made smaller by up to half the typical value of 3 used in a reactor, the amount of toroidal coil, transformer coil, and other torus component materials can be reduced by 1.5, 0.7, and 0.7%, respectively. If one includes a reactor building and accessory facilities that are not affected by the shielding design margin, the whole reactor material reduction becomes 0.55%. Since reactor cost is assumed to be proportional to the amount of material, the 0.55% reduction may be worth $55 million when the estimated price of the reactor is assumed to be $10 billion.