ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Myunghwa Shim, Hongsuk Chung, Hiroshi Yoshida, Haksoo Jin, Min Ho Chang, Sei-Hun Yun, Seungyon Cho
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 856-860
Tritium Breeding | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-13
Articles are hosted by Taylor and Francis Online.
We are developing an innovative ZrCo hydride bed design, which is characterized by a large cylindrical filter, very thin cylindrical metal hydride powder packed layer, and large relative heating area per unit weight of ZrCo powder for ITER fuel cycle application. To validate this design concept, two ZrCo bed models each loaded with 127 g of ZrCo were tested by using H2 gas. In the first model, ZrCo powder was packed into the 3 mm gap between the filter cylinder and the vessel, and mold heater elements were attached to the outer surface of the vessel. The second model consisted of a layer of ZrCo powder packing (7 mm thickness), coiled cable heaters attached independently to the outer surface of the primary vessel and the inner surface of the filter cylinder. This paper presents detailed design features of the ZrCo bed models, and test results of the beds performances, i.e., temperature transient of the ZrCo packed bed during fast heating, hydriding rate up to 90-99% recovery, and 90-98% delivery fraction.