ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Myunghwa Shim, Hongsuk Chung, Hiroshi Yoshida, Haksoo Jin, Min Ho Chang, Sei-Hun Yun, Seungyon Cho
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 856-860
Tritium Breeding | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-13
Articles are hosted by Taylor and Francis Online.
We are developing an innovative ZrCo hydride bed design, which is characterized by a large cylindrical filter, very thin cylindrical metal hydride powder packed layer, and large relative heating area per unit weight of ZrCo powder for ITER fuel cycle application. To validate this design concept, two ZrCo bed models each loaded with 127 g of ZrCo were tested by using H2 gas. In the first model, ZrCo powder was packed into the 3 mm gap between the filter cylinder and the vessel, and mold heater elements were attached to the outer surface of the vessel. The second model consisted of a layer of ZrCo powder packing (7 mm thickness), coiled cable heaters attached independently to the outer surface of the primary vessel and the inner surface of the filter cylinder. This paper presents detailed design features of the ZrCo bed models, and test results of the beds performances, i.e., temperature transient of the ZrCo packed bed during fast heating, hydriding rate up to 90-99% recovery, and 90-98% delivery fraction.