ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
C. Jong, J. Knaster, C. Sborchia
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 666-671
ITER | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8985
Articles are hosted by Taylor and Francis Online.
The Toroidal Field (TF) system of ITER consists of 18 coils in which the winding pack (WP) is formed by 7 stacked double pancakes (DP). The conductors in the TF coil are operated in steady state mode with a current of 68 kA providing a flux of 5.4 T at the plasma axis. The conductors are wrapped with turn insulation and embedded in grooves manufactured in so called radial plates. The grooves are closed with covers, wrapped with glass and polyimide tapes and vacuum impregnated. This layout of the TF WP prevents the accumulation of stresses in the turn insulation, making unlikely the occurrence of a turn-to-turn short circuit. The insulation of the WP will undergo during ITER design lifetime fast neutron fluencies up to 3.2x1021n/m2, which is equivalent to 10 MGy. Standard epoxies degrade if submitted to such doses, developing mechanical properties that would not withstand the estimated operation in-plane shear stress in the range of 45 MPa. The use of a radiation-hard thermoset for glass-fiber composites (cyanate ester) is considered and the on-going extensive qualification work will be presented. The technical solution of how to isolate critical High Voltage (HV) areas like the joint connections or voltage taps is also discussed.