ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K., Japan to extend decommissioning partnership
The U.K.’s Sellafield Ltd. and Japan’s Tokyo Electric Power Company have pledge to continue to work together for up to an additional 10 years, extending a cooperative agreement begun in 2014 following the 2011 tsunami that resulted in the irreparable damage of TEPCO’s Fukushima Daiichi plant.
D. K. Murdoch, R. Lässer, M. Glugla, A. Mack
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 3-10
Technical Paper | Tritium Science and Technology - Tritium Processing, Transportation, and Storage | doi.org/10.13182/FST05-A869
Articles are hosted by Taylor and Francis Online.
The European Participant Team (PT) of the ITER project has developed coherent designs, validated in a comprehensive R&D programme, of the main systems which form the inner loop of the ITER Fuel Cycle (FC), consisting of the cryopumps (CP), mechanical backing pumps (RP), Torus Exhaust Processing (TEP), Isotope Separation System (ISS), Storage and Delivery System (SDS), and the Analytical System (ANS). The key objectives of the designs are flexibility to accommodate the different machine operating modes and parameter variations expected, minimization of global tritium inventory, and the use of robust, simple processing concepts to ensure longevity and ease of operation. The configuration of each of the systems has been frozen as a basis for a full investigation of the process performance, while the detailed mechanical and electrical design will be completed after site selection, as this may influence some details of the component selection and layout.