ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Yasushi Yamamoto, Kazuyuki Noborio, Satoshi Konishi
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1285-1289
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST05-A866
Articles are hosted by Taylor and Francis Online.
We have been developing a 1-D PIC simulation code for the spherical IECF, which includes atomic processes between energetic particles and background gases. In this paper, the electrode spacing effects on the neutron production rate (NPR) are investigated using this code by changing the cathode radius while keeping anode radius constant (17cm). Applied voltage (-90 kV) and ion injection current (50mA) are fixed with a deuterium pressure of 0.13 Pa, where the IECF discharge is not self-sustaining discharge and is in the ion injection mode.It is found that (1) the discharge voltage is not affected by the electrode spacing, (2) the neutron production rate increases with the increase of the cathode radius, and (3) the maximum obtained NPR with cathode radius of 10cm is about twice of that with the 3cm cathode.