ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Yasushi Yamamoto, Kazuyuki Noborio, Satoshi Konishi
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1285-1289
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST05-A866
Articles are hosted by Taylor and Francis Online.
We have been developing a 1-D PIC simulation code for the spherical IECF, which includes atomic processes between energetic particles and background gases. In this paper, the electrode spacing effects on the neutron production rate (NPR) are investigated using this code by changing the cathode radius while keeping anode radius constant (17cm). Applied voltage (-90 kV) and ion injection current (50mA) are fixed with a deuterium pressure of 0.13 Pa, where the IECF discharge is not self-sustaining discharge and is in the ion injection mode.It is found that (1) the discharge voltage is not affected by the electrode spacing, (2) the neutron production rate increases with the increase of the cathode radius, and (3) the maximum obtained NPR with cathode radius of 10cm is about twice of that with the 3cm cathode.