ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Yasushi Yamamoto, Kazuyuki Noborio, Satoshi Konishi
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1285-1289
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST05-A866
Articles are hosted by Taylor and Francis Online.
We have been developing a 1-D PIC simulation code for the spherical IECF, which includes atomic processes between energetic particles and background gases. In this paper, the electrode spacing effects on the neutron production rate (NPR) are investigated using this code by changing the cathode radius while keeping anode radius constant (17cm). Applied voltage (-90 kV) and ion injection current (50mA) are fixed with a deuterium pressure of 0.13 Pa, where the IECF discharge is not self-sustaining discharge and is in the ion injection mode.It is found that (1) the discharge voltage is not affected by the electrode spacing, (2) the neutron production rate increases with the increase of the cathode radius, and (3) the maximum obtained NPR with cathode radius of 10cm is about twice of that with the 3cm cathode.