ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Shin-ya Chiba et al.
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 569-573
Technical Paper | Fusion Energy - First Wall, Blanket, and Shield | doi.org/10.13182/FST05-A746
Articles are hosted by Taylor and Francis Online.
The experimental research on heat-transfer enhancement for such high Prandtl-number fluid as Flibe has been performed with a large molten salt circulating experimental loop named as "TNT loop" (Tohoku-NIFS Thermofluid loop). Through the experiments, a packed-bed tube is employed as the enhancer for molten salt. It is clarified that the enhancement of packed-bed tube is superior to that of turbulent heat transfer from the viewpoint of the same flow rate. Also, the 1/4-diameter bed is superior to the 1/2-diameter one at the same flow rate. Furthermore, at low flow rate, a little differences of heat transfer performance can be seen between the stainless-steel bed and copper bed. At high flow rate, however, the heat-transfer coefficient ratio strongly depends on the flow rate in the case of the 1/4-diameter copper bed only. As a result, it is considered that the thermal energy is expanded from a heated wall deeply and fast through packed bed at low flow rate. On the contrary, it is also considered that the convective heat transfer in the vicinity of a heated wall is strong at high flow rate. The evaluation from the viewpoint of the pressure drop shows that the turbulent heat transfer is superior to that with packed bed. However, the ratio of heat transfer with bed to turbulent one is steeply improved at low flow rate. Taking account of MHD effect, avoidance of erosion and electrolysis of Flibe, the enhancement under low flow-rate condition can be suitable in a fusion reactor.