ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Y. T. Lee, A. Q. L. Nguyen, H. Huang, K. A. Moreno, K. C. Chen, C. Chen, M. A. Johnson, J. D. Hughes, R. C. Montesanti, D. W. Phillion
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 405-410
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-28
Articles are hosted by Taylor and Francis Online.
A phase-shifting diffraction interferometer provides full surface mapping of National Ignition Facility (NIF) ablator capsules for surface finish and isolated defects. To integrate this new instrument into the NIF metrology work flow, the measurement must be both quick and accurate. In this work, we developed automated processing algorithms to streamline a large number of manual steps. This enables the process time to be reduced from 1½ days to 2 h per shell, thus meeting the NIF throughput requirement of 20 capsules/week. We also developed methods to quantitatively report the isolated defects and surface roughness in formats that can be benchmarked against the NIF specifications.